Factorization Homology of Topological Manifolds

نویسنده

  • DAVID AYALA
چکیده

Factorization homology theories of topological manifolds, after Beilinson, Drinfeld and Lurie, are homology-type theories for topological n-manifolds whose coefficient systems are n-disk algebras or n-disk stacks. In this work we prove a precise formulation of this idea, giving an axiomatic characterization of factorization homology with coefficients in n-disk algebras in terms of a generalization of the Eilenberg–Steenrod axioms for singular homology. Each such theory gives rise to a kind of topological quantum field theory, for which observables can be defined on general n-manifolds and not only closed n-manifolds. For n-disk algebra coefficients, these field theories are characterized by the condition that global observables are determined by local observables in a strong sense. Our axiomatic point of view has a number of applications. In particular, we give a concise proof of the nonabelian Poincaré duality of Salvatore, Segal, and Lurie. We present some essential classes of calculations of factorization homology, such as for free n-disk algebras and enveloping algebras of Lie algebras, several of which have a conceptual meaning in terms of Koszul duality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorization Homology of Stratified Spaces

This work forms a foundational study of factorization homology, or topological chiral homology, at the generality of stratified spaces with tangential structures. Examples of such factorization homology theories include intersection homology, compactly supported stratified mapping spaces, and Hochschild homology with coefficients. Our main theorem characterizes factorization homology theories b...

متن کامل

Factorization Homology of Enriched ∞-categories

For an arbitrary symmetric monoidal∞-category V, we define the factorization homology of V-enriched∞-categories over (possibly stratified) 1-manifolds and study its basic properties. In the case that V is cartesian symmetric monoidal, by considering the circle and its self-covering maps we obtain a notion of unstable topological cyclic homology, which we endow with an unstable cyclotomic trace ...

متن کامل

Poincaré/koszul Duality

We prove a duality for factorization homology which generalizes both usual Poincaré duality for manifolds and Koszul duality for En-algebras. The duality has application to the Hochschild homology of associative algebras and enveloping algebras of Lie algebras. We interpret our result at the level of topological quantum field theory.

متن کامل

Topological Centers and Factorization of Certain Module Actions

Let $A$ be a Banach algebra and $X$ be a Banach $A$-bimodule with the left and right module actions $pi_ell: Atimes Xrightarrow X$ and $pi_r: Xtimes Arightarrow X$, respectively. In this paper, we  study  the topological centers of the left module action $pi_{ell_n}: Atimes X^{(n)}rightarrow X^{(n)}$ and the right module action $pi_{r_n}:X^{(n)}times Arightarrow X^{(n)}$,  which inherit from th...

متن کامل

Suspensions of homology spheres

This article is one of three highly influential articles on the topology of manifolds written by Robert D. Edwards in the 1970’s but never published. This article “Suspensions of homology spheres” presents the initial solutions of the fabled Double Suspension Conjecture. The article “Approximating certain cell-like maps by homeomorphisms” presents the definitive theorem on the recognition of ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015